il .. | mSphere

MICROBIOLOGY

RESEARCH ARTICLE
Molecular Biology and Physiology

L)

Check for
updates

Observations of Shear Stress Effects on Staphylococcus aureus

Biofilm Formation

Erica Sherman,® Kenneth Bayles,® Derek Moormeier,® Jennifer Endres,® 2 Timothy Wei?

2Department of Mechanical & Materials Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
bDepartment of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA

ABSTRACT  Staphylococcus aureus bacteria form biofilms and distinctive micro-
colony or “tower” structures that facilitate their ability to tolerate antibiotic treat-
ment and to spread within the human body. The formation of microcolonies, which
break off, get carried downstream, and serve to initiate biofilms in other parts of the
body, is of particular interest here. It is known that flow conditions play a role in the
development, dispersion, and propagation of biofilms in general. The influence of
flow on microcolony formation and, ultimately, what factors lead to microcolony de-
velopment are, however, not well understood. The hypothesis being examined is
that microcolony structures form within a specific range of levels of shear stress. In
this study, laminar shear flow over a range of 0.15 to 1.5 dynes/cm? was examined.
It was found that microcolony structures form in a narrow range of shear stresses
around 0.6 dynes/cm?. Further, measurements of cell density as a function of space
and time showed that shear dependence can be observed hours before microcolo-
nies form. This is significant because, among other physiologic flows, this is the
same shear stress found in large veins in the human vasculature, which, along with
catheters of similar diameters and flow rates, may therefore play a critical role in
biofilm development and subsequent spreading of infections throughout the body.

IMPORTANCE It is well known that flow plays an important role in the formation,
transportation, and dispersion of Staphylococcus aureus biofilms. What was hereto-
fore not known was that the formation of tower structures in these biofilms is
strongly shear stress dependent; there is, in fact, a narrow range of shear stresses in
which the phenomenon occurs. This work quantifies the observed shear depen-
dence in terms of cell growth, distribution, and fluid mechanics. It represents an im-
portant first step in opening up a line of questioning as to the interaction of fluid
forces and their influence on the dynamics of tower formation, break-off, and trans-
portation in biofilms by identifying the parameter space in which this phenomenon
occurs. We have also introduced state-of-the-art flow measurement techniques to
address this problem.

KEYWORDS Staphylococcus aureus, biofilms, microchannel flow, shear stress, tower
formation

taphylococcal bacteria are recognized as the most frequent cause of biofilm-

associated infections. This is primarily the case for lower respiratory tract infections
and surgical site infections and secondarily for nosocomial bacteremia, pneumonia, and
cardiovascular infections (1). Of particular interest in this study is the species Staphy-
lococcus aureus, a nonmotile spherical bacterium with a diameter of ~1 um. Roughly
40% of the members of the general population are colonized with S. aureus. These
individuals carry an increased risk for infection associated with surgery, dialysis, or
intravascular device implants (2). Individuals who are colonized with S. aureus and who
suffer from chronic diseases such as cystic fibrosis (3) are also at risk. The lethal
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reputation of S. aureus results from its ubiquity coupled with its ability to form biofilms
and produce a variety of virulence factors.

Bacterial biofilm development varies with environment and species (4). S. aureus
biofilm formation involves attachment, multiplication, exodus, maturation, and disper-
sal (5). The maturation stage is characterized by the emergence of “microcolonies,” or
“tower” structures, arising from a basal layer of seemingly quiescent cells. Recent
studies (6-8) have shown that different microcolonies exhibit heterogeneity in their
growth and gene expression patterns, suggesting they might possess distinct functions
within the biofilm population. For example, differences in metabolic activity associated
with different microcolonies may result in mutagenic hot spots that promote genetic
diversification (9). Another function might be to promote the dissemination of biofilm
cells to distal sites. Indeed, previous studies (10-12) have shown that S. aureus biofilm
formation is associated with the generation of so-called “rolling emboli,” which would
presumably allow the cells associated with these structures to remain protected in a
biofilm state while they transit to a new site.

Although formation of microcolonies is readily observed, little is known about what
induces their formation. The effect of flow have been studied but not in the context of
tower formation (10, 13-16). In the current study, the problem of identifying and
understanding flow conditions under which S. aureus forms distinct tower structures
was examined. Specifically, we tested the hypothesis that microcolony development is
affected by fluid shear stresses. The results indicated that there is a distinct range of
fluid shear stresses in which microcolonies form. Interestingly, the range of stresses
around the level at which microcolonies formed (0.6 dynes/cm?) was similar to the
shear stress found in large veins in the human vasculature, suggesting that this
characteristic of S. aureus biofilm development can be optimized to promote dissem-
ination within a mammalian host.

This investigation builds from an earlier study (5) in which S. aureus cells were
cultured in a glass microchannel and subjected to flow conditions. It was observed that
over the first ~6 h, the cells appeared to multiply homogeneously and fill the micro-
channel floor. After that, there was an exodus event characterized by a sudden release
of cells from the floor. From that point on, the biofilms developed microcolony
structures that appeared as dark clumps of cells. In some cases, microcolonies would
grow to the point of entirely blocking the channel. In other instances, the microcolonies
would detach and be carried downstream by the flow.

An additional driver for this investigation arose from a preliminary set of spatially
and temporally resolved flow measurements of a tower formation event (17). The key
finding from that experiment is shown in Fig. 1, in which of constant streamwise
velocity measured ~5 um from the microchannel wall (using microparticle image
velocimetry [uPIV]) are overlaid on microscope images of S. aureus. Note that the image
intensities are inverted such that cells appear as bright circles on a dark background.
Three images are shown for measurements made at 5-h intervals. Flow is left to right,
and the field of view is ~350 um by ~350 um. The color legend indicates the velocity
contour levels in micrometers per second.

The image at time (t) 0 h corresponds to initiation of flow. It simply shows that flow
was uniform and that the cells appear to be randomly distributed across the field of
view. In the third image (t = 10 h), the start of a tower is clearly visible to the right of
center. Observe the isovelocity contours showing flow diverting around the forming
tower.

The fascinating feature, however, is the middle image, corresponding to t = 5 h.
Observe that the cells were still randomly distributed. However, the velocity
contours indicate that flow appears to be diverging around the location where the
tower would form 5 h later. It was determined in retrospect that cells in this
particular experiment may have suffered from phototoxic effects that would negate
any conclusions regarding normal biofilm growth. The data, however, fueled the
hypothesis that flow itself plays an integral role in determining whether and where
towers form.
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FIG 1 Contours of constant streamwise velocity overlaid on inverted (negative) images of S. aureus biofilm development in a preliminary experiment (17). Cells
were subjected to a steady laminar flow with an applied shear stress of 0.6 dynes/cm?; flow is left to right. Observe the region of accelerated flow in thet =5 h
image (green contour) 5 h before the tower was first observed.

The initial challenge in addressing this hypothesis is that of framing the parameter
space in which the tower formation phenomenon occurs. Specifically, if flow does
indeed affect tower formation, then there should be a well-defined set of flow
conditions under which towers are most likely to form. Once that set of conditions
is determined, subsequent research could be focused on understanding why and
how those flow conditions affect tower development. While there is evidence (5, 18)
that a shear stress of 0.6 dynes/cm? is significant, this has not yet been quantita-
tively proven. The objective of this study, then, is to examine whether there is a
preferred range of flow shear stresses for tower formation. Finally, it should be
noted that because of the our previous work on the S. aureus strain, this particular
study started at that point; examination of additional strains will be the focus of
future work.
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TABLE 1 Tower-forming frequency as a function of applied shear stress for the seven
applied shear stress levels?

P values without P values with

Applied No. of No. of Fraction of Benjamini Benjamini
shear stress  channels  channels channels Hochberg Hochberg
(dynes/cm?)  tested with towers  with towers  adjustment adjustment
0.15 31 2 0.06 0.039 0.078

0.30 22 0 0.00 0.005 0.014

0.45 35 5 0.14 0.154 0.231

0.60 18 6 0.33

0.75 12 1 0.08 0.193 0.232

0.90 18 2 0.11 0.228 0.229

1.50 24 0 0.00 0.004 0.014

aThe P value from the Fisher exact test was found to be 0.001, implying that statistically significant
differences exist in the frequency of observing towers as a function of applied shear stress. Comparisons of
the six other shear stress levels against the level of 0.6 dynes/cm? with and without the Benjamini
Hochberg adjustment are shown.

RESULTS AND DISCUSSION

The goal of this investigation was to employ cell counting methodologies and flow
measurement techniques to test the hypotheses that flow plays a decisive role in
tower formation over a range of shear stress levels. As noted earlier, Staphylococcus
aureus was used in this study because prior work from this team (5, 18) qualitatively
indicated a biofilm phenotype dependence on shear for this strain. Experiments
were conducted at six different applied shear stress levels from 0.15 dynes/cm? to
0.9 dynes/cm? in increments of 0.15 dynes/cm2. A seventh shear level, 1.5 dynes/
cm?, was also tested to cover a full order of magnitude. The range was selected
based on the empirical observation (18) that tower formation seemed most likely to
occur around 0.6 dynes/cm?2.

Frequency and phenotype of tower formation. The effect of fluid shear stress on
formation of tower structures in wild-type UAMS-1 S. aureus is quantified in Table 1.
Numbers of channels studied at each shear level and channels with observed towers
are tabulated. It can clearly be seen that the applied shear stress of 0.6 dynes/cm? had
the highest occurance of tower formation at 0.33. Note that, since the microscope field
of view was only in planes parallel to the microchannel floor on which the towers grew,
it was not possible to ascertain the vertical growth of the towers.

Since all but two applied shear stress cases had fewer than five channels in which
towers developed, the statistical significance of these findings was assessed using the
Fisher exact test. The Benjamini-Hochberg method was then employed to determine
the false-discovery rate for multiple comparisons. The P value from the Fisher exact test
was found to be 0.001, implying that statistically significant differences existed in the
frequency of observations of towers as a function of applied shear stress. Comparing
the six other shear stress levels against the level of 0.6 dynes/cm?, the P values
determined without the Benjamini Hochberg method were 0.039, 0.005, 0.154, 0.193,
0.228, and 0.004 (for 0.15, 0.30, 0.45, 0.75, 0.90, and 1.5 dynes/cm?, respectively). The
corresponding P values after Benjamini Hochberg adjustments were 0.078, 0.014, 0.231,
0.232, 0.229, and 0.014.

This analysis clearly indicates a range of shear stress levels, 0.45 to 0.9 dynes/cm?, in
which tower formation is more likely to occur. Further, Table 1 indicates a much
narrower peak centered at 0.6 dynes/cm?, though the computed statistical significance
of this is lower. Other results presented below, however, further distinguish 0.6 dynes/
cm? from the other applied shears.

Differences in tower phenotype for different shear levels appear in Fig. 2 (see also
Fig. 4), where sequences of video images spaced at 30-min intervals (i.e., every sixth
video image) are shown for shear stress levels of 0.6, 0.45, and 0.75 dynes/cm?2. For each
image, the time in minutes from the onset of flow is indicated. The viewing direction
is through the microchannel bottom. Flow is left to right, with the full 350-um
microchannel width spanning each image bottom to top.
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(@) t=10.25 hrs (B) t = 10.75hrs

(c) t = 11.25 hs (d) t = 11.75 hrs

(e) t =12.25 hrs ) t=12.75 hrs

(&)t = 13.25 hrs (h) t = 13.75 hrs

FIG 2 Sequence of eight video images showing tower formation at an applied shear stress of 0.6
dynes/cm?2. Flow is left to right with t = 0 corresponding to the start of experiment. The full 350-um
width of the channel spans each image from bottom to top.

There are two tower phenotypes visible in the sequence of images corresponding to
0.6 dynes/cm? in Fig. 2. The first is a large immobile tower that initiated and grew in
place until it eventually completely blocked the channel (not shown). An example of
this phenotype can be seen growing to the right of center along the bottom of the field
of view.

The other phenotype is a large agglomeration of cells that does not anchor in place.
Multiple examples can be seen in Fig. 2; they appear in one frame or two frames and
then disappear. These are structures that likely formed upstream outside the field of
view, broke loose from the microchannel floor, and then were carried downstream by
the flow. Irrespective of phenotype, these towers can become quite large and dense.

The towers observed at 0.45 dynes/cm? (Fig. 3) are not similar to those generated
at 0.6 dynes/cm? shown in Fig. 2. The structures at this shear level were smaller and
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(a) t = 6.08 hrs ' (b) t = 6.58 hrs

(c)t=7.08 hrs (d)t=7.58 hrs

(e) t = 8.08 hrs () t=858hrs

(®)t=9.08 hrs (h)t = 9.58 hrs

(i) t = 10.08 hrs

FIG 3 Sequence of nine video images showing tower formation at an applied shear stress of 0.45
dynes/cm?2. The orientation, field of view, and reference time are identical to those in Fig. 2.

tended to shed cells and roll downstream. As seen in Fig. 3, cells appear to aggregate
in smaller, less-dense structures that dynamically evolve and break free with time. Much
lower cell density than that shown in Fig. 2 is also evident. This is discussed in greater
detail in the following section.

Finally, of the 12 channels examined at 0.75 dynes/cm?, only one tower was
observed. Development of this tower is shown in Fig. 4. One can see that it formed
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FIG 4 Sequence of nine video images showing tower formation at an applied shear stress of 0.75
dynes/cm?2. The orientation, field of view, and reference time are identical to those in Fig. 2.
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above the microchannel midline though its shape, and its location appears to have
varied somewhat with time but, overall, it appears to have been elongated in the flow
direction. And, by and large, the tower shown in Fig. 4 appears less dense than the ones
seen in Fig. 2, though differences in lighting make that interpretation somewhat
uncertain. In general, however, it was observed that the towers forming at 0.6 dynes/
cm? were larger and more firmly affixed to the channel floor than the towers observed
at other applied shears.

While understanding the exact reason for this apparent preference for 0.6 dynes/
cm? is beyond the scope of this study, it is worth referring back to the literature to
highlight why flow would be important in microcolony formation and detachment.
Specifically, since S. aureus does not employ swimming mechanisms such as flagella, its
sensitivity to the flow environment may be essential to its dispersion strategy. In fact,
studies in curved geometries where S. aureus has been shown to form biofilm streamers
at corners seems to indicate that by forming streamers, S. aureus benefits from the mass
transport of new cells to the streamer location, fortifying its porous structure and
facilitating its growth to block channels (6). Generally, motility may enable a cell to
acquire nutrients or to move toward more favorable conditions (14). In fact, high shear
flows may prove challenging for swimming or motile bacteria to travel toward new
areas or nutrients, as such conditions tend to promote surface attachment (19).

Perhaps more importantly, it appears that the shear stress level of 0.6 dynes/cm? is
clinically very significant. In vivo measurements of flow in arteries and veins (20, 21)
indicate that the mean shear level in the larger veins and arteries is less than 1.0
dynes/cm?. In fact, magnetic resonance imaging (MRI) in a healthy vein (21) yielded wall
shear stress levels of exactly 0.6 dynes/cm?2. This is particularly important because
venous flow is steady, unlike the pulsatile flow in arteries. As such, the conditions
examined in the current study are more relevant to flow in veins. It would be expected
that catheters with diameters and flow rates similar to those measured for veins would
have wall shear stresses in a comparable range.

Temporal variations in cell density. To quantitatively examine differences be-
tween flows with and without towers, temporal and spatial variations in cell density and
flow were studied. As described under “Image processing and analysis” below, cell
densities in regions of 8.4 um by 8.4 um (25 by 25 pixels) in the fields of view were
computed. The average cell density in a channel at each time step was calculated on
the basis of the 2,255 regions comprising the entire channel field of view. Data from
matching cases, i.e, same shear stress with tower formation or same shear without
towers, were then further determined by ensemble averaging. Data corresponding to
average cell density as a function of time for the seven shear stresses examined appear
in Fig. 5. Solid symbols indicate averages for tower cases, while open symbols were
used for nontower cases.

It can be observed in Fig. 5 that the cell density values for the majority of shear stress
levels are <0.2, irrespective of whether towers formed or not. The notable exception is
0.6 dynes/cm? with and without towers. The observation should be made that the
0.9-dynes/cm? cases, i.e., with and without towers, and the 1.5-dynes/cm? case without
towers have maximum average cell density values between 0.25 and 0.37. It is also
interesting that the mean cell density in the 0.9-dynes/cm? cases appears to have been
higher than in any other case at the start of the experiments; this is a point for futher
investigation. The key point here, however, is that the cell densities for the 0.6-dynes/
cm? cases are dramatically higher than all other shear levels, both with and without
towers. Along with the video records, this further highlights the shear level of 0.6
dynes/cm? as biologically significant.

Focusing on the two 0.6-dynes/cm? curves, cell multiplication in the first 4 h is
clearly visible. Indeed, this growth rate is dramatically higher than that seen with any
other applied shear. Interestingly, the cell growth rate was lower in the channels that
ultimately developed towers than in those in which towers did not form. This is a
distinction that is actually noticable in the data corresponding to the period within the
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FIG 5 Average cell density (i.e., number of pixels occupied by cells divided by the total number of pixels
in the field of view) versus time for the seven different applied shear stresses. Data for each shear are
further segregated by whether or not a tower formed in the channel. Data corresponding to the numbers
of channels for each case can be extracted from Table 1. Observe how distinctly different the 0.6
dynes/cm? case is for both channels with and without towers relative to the other applied shears.

first hour of the experiment and over 10 h before towers develop. (Data for the
channels where towers formed end at the time point at which the towers first
appeared.)

The exodus phenomenon, i.e., the release of cells attached to the microchannel
floor, is visible beginning at approximately t = 7 h as a decrease in cell density. It turns
out that whereas the onset of exodus is visually distinct in the videos, cell density
continued to decrease in the 0.6-dynes/cm? channels for several hours. In fact, for the
period of 4 h < t <12 h when towers formed, the two 0.6-dynes/cm? curves with and
without tower formation are indistinguishable.

Spatiotemporal variations in cell density. Having divided the camera field of view
into regions of 8.4 um by 8.4 um (25 by 25 pixels), it was possible to also quantify the
spatial distribution of particles at each time step. This is done by computing probabil-
ility density functions (pdf) of the cell densities. That is, defining p; (t) as the cell density
in the (i, j) region of the field of view at time t, the probability that the cell density value
in that region would fall within some interval, p < p,;;(t) = p + Ap, corresponds to the
number of regions with density values in that interval divided by the total number of
regions. The pdf at time t then represents the composite of probabilities for all intervals
0 = p = 1. By generating pdfs at regular time intervals across the biofilm development,
one can look for additional differences between the channels that formed towers and
those that did not.

The evolution of cell density pdfs for the 0.6-dynes/cm? channels appears in Fig. 6.
Ensemble-averaged pdfs for channels with (shown in red) and without (blue) towers are
shown at 1-h intervals beginning 20 min after shear was applied. Key features are the
location, symmetry, and width of the individual pdfs. The location of each pdf repre-
sents the mean cell density. Thus, if cell density increases, the centroid shifts to the
right. Observe that this occurs for the channels both with and without towers. The pdfs
for the channels with towers, however, are distinctly to the left of the pdfs for the
channels without towers, particularly at earlier times (Fig. 6a to c). This is consistent
with the data in Fig. 5 showing that, overall, the cell density for the 0.6-dynes/cm?
channels with towers is lower than for channels without, particularly during the
multiplication phase.

Symmetry, in turn, indicates the homogeneity of the pdf. A tail extending to the
right in the pdf indicates that cells are concentrated in small regions in the field of view,
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FIG 6 Cell density pdf graphs (representing the number of 25-by-25-pixel windows with a certain cell density)
for the channels corresponding to a shear stress of 0.6 dynes/cm2. Data for channels with towers are shown in
red. Nontower data are blue. As indicated in Table 1, there were 6 channels in which towers were observed and
12 without. Panels a to m compare pdfs determined at 1-h intervals beginning 20 min after flow was initiated.
On average, towers formed <12 h after the start of the experiments.
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while a tail to the left indicates patches where there are fewer cells. Comparing pdfs of
channels with and without towers in Fig. 6 reveals that pdfs of channels without towers
are generally symmetric whereas pdfs of channels with towers start off highly asym-
metric, with tails extending to the right. This indicates that even at the earliest stages
of the experiments, the cells in the channels that ultimately formed towers tended to
culture in clumps rather than distributing uniformly across the channel.

Finally, while the widths of the pdfs for channels without towers are roughly
constant for the duration of the runs, pdfs for channels with towers broaden with time.
In Fig. 6a, at ~20 min after flow was started, the pdf for the channels that ultimately
formed towers is highly asymmetric, with a maximum at a value of 0.0, and, except for
a very small secondary peak around 0.35, is confined to density values of <0.2. For each
subsequent hour, those pdfs widen and move to the right. The secondary peaks at the
extreme right of those pdfs exist for all times analyzed and indicate a small number of
regions in which the cell density is significantly higher than in the rest of the field of
view. Hours before towers form, then, the spatial distribution of cells for the channels
that formed towers was different from the distribution for those that did not.

pPTV measurements. There are clearly differences in cell density and distribution
when towers do and do not form. These differences are most distinct for an applied
shear of ~0.6 dynes/cm?2. The issue remains, however, of whether there are mechanics-
based indicators, e.g., fluid velocity, that may serve as predictors for tower formation.
To test this, microparticle tracking velocimetry (uPTV) studies were conducted.

It should be noted at the outset that a result as clean as that shown in Fig. 1 was
never replicated. That is, there does not appear to be a simple, recognizable fluid
velocity indicator that foreshadows the imminent appearance of a tower. However,
through multiple experiments and measurement refinements performed over several
years, a consistent observation was that the flow seen when towers form is more
variable than when towers never form.

The most compact way of quantifying these differences was to calculate the spatial
mean, U, and root mean square (RMS), u’, corresponding to variations of streamwise
velocity with time. This is analogous to the cell density statistics described earlier in this
section. The key difference is that, for this analysis, streamwise velocity instead of cell
density was the dependent variable of interest.

Specifically, for each of the six channels in which towers were observed, rectangular
regions were defined surrounding the location where each tower ultimately formed.
This was done retrospectively by looking at the end of the video record and identifying
the size and location of the tower(s). For an example, the reader is referred to the tower
along the bottom of the image in Fig. 2h. Note that the size of the bounded region
depended, of course, on the size of the tower that formed.

At each time step, beginning after exodus, the mean and RMS values corresponding
to every streamwise velocity value in each region were computed; these values
represent the spatial mean and RMS for each region at that time. This was done for each
time step until a tower formed. For channels where no towers formed, equivalently
sized regions were defined and analogous time histories of U and u’ were computed.

To remove channel-to-channel variability in the bulk flow, all values of U were made
nondimensional by application of the spatial mean velocity at the first time step after
exodus for the corresponding channel, U,. In that way, the first nondimensional mean
velocity value for every channel was unity, i.e., U/U, = 1. The RMS variations in velocity,
u’, were made nondimensional by application of the spatial mean velocity at the
corresponding time step, U. At each time step, then, U/U, and u'/U for the 12
0.6-dynes/cm? channels without towers were determined by ensemble averaging. The
same was done for the six channels in which towers formed. The full data set is
presented in the work by Sherman (22).

It was observed that for the channels in which no towers formed, U/U, increased
~5% over the first 3 h after exodus and another ~10% in the following 1.5 h. In
contrast, the U/U, value decreased by ~10% in the regions where towers did form in
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the first 3 h after exodus. After the towers began forming, U/U, decreased precipitously
as flow diverted around the forming towers.

There were also differences in u’/U values between the tower and nontower cases.
For the first 3 h after exodus, the nondimensional RMS variations in streamwise velocity,
u'/U, for the channels without towers is ~0.00025%. In contrast, for the channels with
towers, u'/U increases from 0.0013 to 0.0015. Even though the flow is nominally laminar
in both cases, the streamwise variations in the channels with towers are roughly six
times greater than those in the channels without towers. Once towers form, the mean
speed decreases and the flow diverts around the towers, resulting in a dramatic
increase in u’/U to 0.0087.

Conclusions. A detailed study of tower formation in S. aureus biofilms subjected to
laminar shear flow was performed. Video records of flow in microchannels were made
over a range of 1 order of magnitude of applied shear stress from 0.15 dynes/cm? to
1.5 dynes/cm?. Data about cell density and spatial distribution of cells as a function of
time were gathered along with spatially resolved wPTV measurements of the flow field
at successive times in the biofilm development. Analysis of these data yielded the
following observations. There is a statistically significant range of shear stresses, i.e.,
between 0.45 dynes/cm? and 0.75 dynes/cm?, where tower formation is more likely to
occur. The highest probability of tower formation occurs at 0.6 dynes/cm2. Time
histories of mean cell density and visual records of biofilms across the entire range of
shear stresses studies further indicate unique behaviors of biofilms at 0.6 dynes/cm?. A
posteriori analysis of the data indicated that there are differences between flows with
towers and flows without that appear hours before tower formation, in some cases
even before exodus. And the value of 0.6 dynes/cm? corresponds to wall shear stress
levels in larger human blood vessels and catheters of similar diameters and flow rates.

In conclusion, then, specific to the two hypotheses tested, it does indeed appear (i)
that there is a distinct range of fluid shear stresses in which towers occur and (i) that
there are indicators of tower formation that manifest hours before towers form. At this
juncture, the exact nature of the coupling between fluid dynamics and tower formation
is not clear. There is also a need to expand this study to examine other bacterial strains.
However, the key finding from this study is that there is indeed a connection of
potentially very significant clinical importance that warrants further investigation.

MATERIALS AND METHODS

Microchannel and imaging system. The S. qureus strains used in this study were derived from
osteomyelitis isolate UAMS-1. All experiments were initiated with fresh overnight cultures grown at 37°C
in tryptic soy broth (TSB) with shaking at 250 rpm. A Bioflux 1000 microfluidic system, including a Nikon
Ti-S inverted microscope, hardware controllers for pump and microscope stage manipulation, a vapor
trap to reduce condensation, a pressure interface to connect the pump to the plates, and a heating plate,
was used.

Experiments were conducted in polydimethylsiloxane (PDMS) microchannels (350 wm wide by 70 um
high by ~4,000 um long) with glass bottom walls. A pneumatic pump produced a steady laminar flow
with wall shear stresses in the range 0 to 20 dynes/cm?2. The microchannel plates, with 24 or 48 wells per
plate, were mounted on a three-axis stage that could also be positioned to 0.1-um accuracy. The stage
included a heater that maintained a temperature of 37°C. For these studies, the x, y, and z axes were
aligned with the flow, width, and height directions, respectively. Imaging was in x-y planes.

Two digital video cameras were used in this investigation. A Retiga EXi CCD camera with resolution
of 1,392 by 1,040 pixels was used for imaging and counting cells attached to the floor of the
microchannels. These images were used to compute statistical data about the biofilms such as cell
density and distribution as a function of time.

A Phantom Miro M310 high-speed color camera was used to make uPTV flow measurements. This
technique is described below. The camera has a thermoelectrically cooled complementary metal oxide
semiconductor (CMOS) sensor with resolution of 1,024 by 768 pixels and can capture full frame video at
over 3,000 frames/s.

The cameras were mounted to a Nikon Ti-S inverted microscope (part of the Bioflux system). A Nikon
Plan Fluor ELWD Ph2 DM objective (40%/0.60 numerical aperture [NA]) was used with an LED micro-
scopic lamp as the illumination source. The lamp was operated at 40 W to avoid disrupting the normal
biological activity of the bacteria.

Microparticle tracking velocimetry (uPTV). Microparticle tracking velocimetry (uPTV) is a nonin-
vasive flow measurement technique that involves tracking particle images in successive frames from a
video record of flow seeded with small, neutrally buoyant particles. For large-scale (e.g., aerodynamics)
experiments, a sheet of laser light is typically used to illuminate particles in a two-dimensional plane.
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Flow measurements with micrometer resolution (i.e., wPTV) are made using a camera mounted to a
microscope such that the microscope objective’s focal plane defines the measurement plane. Video
images are digitized, and a computer algorithm computes displacements of every particle in the field of
view from one frame to the next. By noting the location of each particle and the time between successive
video frames, this process yields a two-dimensional vector field in which flow velocity is measured at
every particle location. Subpixel particle displacement resolution is achieved by computing the centroid
of each particle image. Creating an ensemble of vector fields increases spatial resolution. Once the
resolution is sufficiently high, a uniformly spaced vector field is created by interpolating the data from
the ensemble of fields. Please see the work by Lambert (23) for further details.

In this study, individual (~1-um-diameter) S. aureus cells suspended in the flow served as uPTV
seeding particles. This was done for two reasons. First, as cells were pumped into the microchannels and
during subsequent multiplication stages, there would always be a number of cells that did not attach to
the microchannel walls. As such, there were always enough suspended cells for accurate flow measure-
ment, even early in the experiments when cell densities were low. These free-floating cells were
nominally neutrally buoyant and were the right size for uPTV flow measurements. More importantly, it
was observed that suspended S. aureus cells agglomerated around the standard seeding particles
typically used for uPTV. As such, seeding particles became nucleation sites for biofilms and significantly
altered the biofilm formation.

S. aureus preparation. In order to grow biofilms in the Bioflux system, microchannels were first
primed for 5 min with 200 ul of TSB at 5.0 dynes/cm?. After priming, the TSB was replaced with 200 ul
of fresh overnight cultures diluted to an optical density (OD) of 0.8. Channels were then seeded by
pumping from the output wells to the input wells at 2.0 dynes/cm? for 5 to 10ss. Cells were allowed to
attach to the channel surfaces for 1 h at 37°C. At the start of each experiment, excess inocula were
carefully aspirated off and 50% TSB was pumped through the microchannels at the desired flow rate, i.e.,
under shear stress conditions, for 16 h.

Flow conditions and imaging. Experiments were conducted at flow rates of 16, 32, 48, 64, 90, 106,
and 160 ul/h, corresponding to wall shear stress levels of 0.15, 0.3, 0.45, 0.6, 0.75, 0.9, and 1.5 dynes/cm?2,
respectively. The working fluid was 50% TSB. For reference, 0.6 dynes/cm? (64 ul/h) and 1.5 dynes/cm?
(160 wl/h) corresponded to microchannel Reynolds numbers, based on mean flow speed and channel
height, of 0.001 and 0.0025, respectively; the flow was laminar for all cases studied.

As noted previously, two types of imaging were done in this investigation, one for cell counting and
the other for uPTV flow measurements. For cell counting and for subsequent statistical analysis of cell
counts, a Retiga EXi charge-coupled-device (CCD) camera was used to record images at 5-min intervals
for approximately 16 h. By that time, experience showed that either at least one tower would form in the
field of view or it was unlikely that one would be observed. With the Bioflux plates, multiple channels
were run simultaneously. The microscope stage positioning software sequentially cycled through each
microchannel such that one image per channel was recorded every 5 min. Every image in each channel
was recorded at the same location = 0.1 um.

Images for uPTV experiments were recorded with a Phantom Miro M310 high-speed color camera.
The time steps were every 45 min instead of every 5 min. This enabled capture of 4,000 images in each
channel per time step at a capture rate of 50 pairs/s.

Image processing and analysis. Two different image processing techniques were used to identify
S. aureus cells, one for determination of biofilm formation statistics and the other for uPTV measure-
ments. In the former, the focus was on stationary cells attached to the microchannel floor. For the flow
measurements, it was important to identify only the unattached cells being carried by the flow.

For biofilm cell density measurements, images were inverted and subsequently converted to binary
data using a threshold appropriate to the specific data set. Averages of three consecutive images
(captured every 5 min), centered on the middle image, were generated to identify nonmoving cells. In
this manner, the time between cell density measurements was maintained at 15 min.

To calculate spatial variation of cell density every 15 min, the averaged image was divided into
regions of 25 by 25 pixels, i.e., ~8.4 um by 8.4 um. Cell density in each region was defined as the number
of bright pixels divided by the 625 pixels in the region. The cell density of the entire field of view was
simply the average of the cell densities in regions of 25 by 25 pixels in each image.

For uPTV, color images were converted to grayscale and thresholded to create binary images. For
each time step, a background image was generated using 100 image pairs. This was subtracted from
every image in the video sequence to produce images containing only moving particles. Finally,
electronic noise was digitally filtered prior to using the uPTV algorithm.

Data availability. The results determined in this study derived from ~50,000 video images totaling
50 GB of data. As described, image processing to identify, track, or count cells comprised the bulk of the
data analysis. The video records can be made available by a request to the corresponding author.
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